Positive periodic solution of higher-order functional difference equation
نویسندگان
چکیده
منابع مشابه
Positive Periodic Solutions of Singular First Order Functional Difference Equation
In this paper, we consider the following singular first order functional difference equation Δx(k) = −a(k)x(k) + λb(k)f(x(k − τ(k))), k ∈ Z where f(.) is singular at x = 0. By using a Kranoselskii fixed point theorem, we will establish the existence and multiplicity of positive periodic solutions for the above problem. The results obtained are new, and some examples are given to illustrate our ...
متن کاملPOSITIVE PERIODIC SOLUTIONS FOR HIGHER-ORDER FUNCTIONAL q-DIFFERENCE EQUATIONS
In this paper, using the recently introduced concept of periodic functions in quantum calculus, we study the existence of positive periodic solutions of a certain higher-order functional q-difference equation. Just as for the well-known continuous and discrete versions, we use a fixed point theorem in a cone in order to establish the existence of a positive periodic solution. This paper is dedi...
متن کاملPositive periodic solutions for higher order functional difference equations
In this paper, we apply a fixed point theorem to obtain sufficient conditions for the existence of positive periodic solutions for two classes of higher-order functional difference equations. AMS subject classification: 39A10.
متن کاملPositive Periodic Solutions of Nonlinear First-Order Functional Difference Equations
Ruyun Ma, Tianlan Chen, and Yanqiong Lu Department of Mathematics, Northwest Normal University, Lanzhou 730070, China Correspondence should be addressed to Ruyun Ma, ruyun [email protected] Received 12 October 2010; Accepted 19 December 2010 Academic Editor: Marko Robnik Copyright q 2010 Ruyun Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which pe...
متن کاملPositive periodic solution for higher-order p-Laplacian neutral singular Rayleigh equation with variable coefficient
where p > , φp(x) = |x|p–x for x = and φp() = , c ∈ Cn(R,R) and c(t + T) ≡ c(t), f is a continuous function defined in R and periodic in t with f (t, ·) = f (t + T , ·) and f (t, ) = , g(t,x) = g(x) + g(t,x), where g : R × (, +∞) → R is an L-Carathéodory function, g(t, ·) = g(t + T , ·), g ∈ C((,∞);R) has a singularity at x = , e : R→ R is a continuous periodic function with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2011
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2011-56